Свариваемость металлов и сплавов

Способность металлов и сплавов образовывать надежные сварные соединения с заданными свойствами называет­ся свариваемостью.

Не все металлы обладают способностью надежно свариваться обычными методами. Наилучшей сваривае­мостью обладают металлы, образующие друг с другом твердые растворы. Нельзя сваривать методом плавле­ния металлы, не растворяемые друг в друге в твердом состоянии. Для их сварки вводят промежуточный ме­талл, способный растворяться в обоих металлах, или ис­пользуют сварку давлением.

Свариваемость стали. Основным показателем свари­ваемости сталей является их стойкость к образованию хрупких зон с мартенситной структурой и закалочных трещин. Ориентировочно оценивают свариваемость по химическому составу. Склонность стали к трещинообразованию устанавли­вают с помощью эквивалентного     содержания углерода.

Принимают, что при С<0,45% сталь сваривается удовлетворительно, при больших же значениях С сле­дует применять предварительный подогрев до 600°С, чтобы предотвратить возникновение трещин.

Свариваемость чугуна. Сварка чугуна используется при ремонте (трещины, поломки деталей и др.). Качест­венно выполненное сварное соединение должно обла­дать механической прочностью, плотностью и легко об­рабатываться режущим инструментом. Сварка чугуна затруднена по причинам: 1) образования цементита при быстром охлаждений шва; 2) появлением значительных собственных напряжений в металле шва и околошовной зоне, вызывающих появление трещин, ввиду малой прочности и пластичности чугунов; 3) появлением пор в шве из-за интенсивного газовыделения.

Повышенная жидкотекучесть чугунов позволяет сва­ривать его только в нижнем положении.

Наиболее эффективно предотвращает появление от­беленных участков металла, трещин и пористости подогрев чугуна и замедленное охлаждение его после сварки. К металлургическим средствам воздействия относят: 1) получение в сварном шве феррито — перлитной струк­туры, характерной для малоуглеродистой стали; 2) свя­зывание углерода в дисперсные и более прочные карби­ды, чем цементит, равномерно распределяющиеся в ме­талле; 3) окисление избыточного углерода и его «выжи­гание» при помощи кислородсодержащих компонентов сварочных материалов; 4) получение в сварном шве структуры серого чугуна путем насыщения металла уг­леродом и другими графитообразующими элементами; 5) получение в сварном шве различных сплавов железа с цветными металлами, отличающихся высокой пластич­ностью.

Применяют горячую (с подогревом    до 500—800°С) и холодную (без подогрева) сварку чугуна. В качестве присадочного металла при газовой сварке используют малоуглеродистую проволоку, латунь, чугунные прутки. Для удаления окислов из сварочной ванны применяют флюс, состоящий из 50% буры, 22% углекислого натрия, 28%   поташа.

При холодной электродуговой сварке чугуна важным является предупреждение чрезмерного местного перег­рева металла. С этой целью сварку ведут вразброс, нак­ладывая короткие участки шва в разных местах завари­ваемого дефектного участка. Широкое распространение получила сварка методом «отжигающего шва» стальным электродом. Этот метод применяют при заварке трещин. Прерывистый шов накладывают в сто­роне от трещины, далее вторым или третьим швом приб­лижаются к трещине и заваривают ее. Окончательный «отжигающий шов» кладут для снижения закалочных напряжений и отбела  чугуна.

При сварке чугуна используют медные электроды, монель-металл (30% меди, 70% никеля), железо-медные электроды марки ОЗЧ-1, аустенито-медные электроды марки  АНЧ-1 (состоят из стального стержня, медной оболочки и фтористо-кальциевого покрытия). При горячей сварке чугуна, как правило, используются чугунные электродные стержни.

Свариваемость меди и ее сплавов. Трудность сварки меди заключается в ее высокой теплопроводности (почти в шесть раз больше, чем у стали), что требует более концентрированного нагрева, при этом значительное теп­ловое расширение меди приводит к существенным тепловым деформациям и напряжениям. Медь имеет понижен­ную стойкость к образованию кристаллизационных тре­щин и пор, что объясняется окислением меди при сварке, наличием в свариваемом металле растворенных газов (кислорода и водорода) и других примесей.

Для улучшения свариваемости меди следует: 1) эф­фективно защищать зону сварки от кислорода и водорода с помощью флюсов; 2) раскислять жидкий металл раскислителями — фосфором, цинком, марганцем, крем­нием; 3) применять некоторые технологические приемы для уменьшения вредного действия окисных пленок, нап­ример проковка сварного соединения (при температуре ниже 200 или выше 600°С) для разрушения сплош­ности залегания окисных пленок. К основным нежелате­льным явлениям при сварке латуней   относится   значительная потеря цинка вследствие его испарения и пог­лощения газов жидким металлом. Испарение цинка свя­зано с низкой температурой его кипения 906°С (темпе­ратура плавления 417°С). Потери цинка при газовой сварке достигают 25%, при дуговой 40%. Уменьшение цинка в сварном шве может привести к пористости и понижению прочности, кроме того, выделяющиеся пары ядовиты. При сварке латуни необходимо через приса­дочный материал уравновесить содержание цинка в шве и основном металле.

Свариваемость бронз в значительной степени зависит от их состава. Особые трудности вызывает сварка ли­тейных оловянистых бронз, в которых при перегреве на границах зерен расплавляется избыточное олово, т. е. снижается прочность, что может привести к разрушению изделия даже под действием собственного веса.

Медь при газовой сварке сваривают горелкой увели­ченной мощности. Процесс ведут быстро и в один про­ход. В качестве присадочного металла используют элек­тролитическую медь. Для меди и ее сплавов попользуют флюс следующего состава: 60—70% буры, 10—20% бор­ной кислоты, 20—30% хлористого натрия.

Латунь сваривают окислительным пламенем. В этом случае на поверхности образуется пленка окисла цинка, которая предохраняет цинк от дальнейшего окисления и испарения.

При электродуговой сварке медь и ее сплавы свари­вают угольными или металлическими электродами. При сварке угольными электродами присадочный металл применяют того же состава, что и основной. Флюс состоит из буры и борной кислоты. Сварку ведут постоян­ным током прямой полярности и длинной дугой. При сварке металлическим, электродом стержни покрывают специальной обмазкой. Сварку необходимо вести без перерыва,  быстро и короткой дугой.

Свариваемость алюминия и его сплавов. Основные трудности при сварке алюминия и его сплавов заключа­ются:

1) в появлении-тугоплавкой и плотной окисной плен­ки, которая препятствует сплавлению частиц металла и трудно удаляется из ванны;

2)   в повышенной склонности металла к образованию пор;

3)   в появлении кристаллизационных трещин.

Потеря прочности и вязкости алюминия и его спла­вов при температурах, близких к плавлению, может при­вести к разрушению металла в зоне нагрева под дейст­вием собственного веса.

Удаление образовавшихся окислов с поверхности ме­талла и защита от окисления жидкого металла — одна из важнейших задач при сварке алюминия и его сплавов. Это достигается особыми покрытиями и флюсами. При расплавлении таких покрытий и флюсов создается шлак, в котором происходит растворение окисной плен­ки и ее химическое связывание.

Для предотвращения пористости следует не до­пускать попадания влаги в область сварки. Для повы­шения стойкости алюминия и его сплавов к образова­нию кристаллизационных трещин необходимо стремить­ся к получению мелкозернистой структуры шва.

При газовой сварке следует стальным крючком пери­одически сдвигать пленку окиси алюминия со шва или использовать флюс следующего состава: 28% хлористо­го натрия, 50% хлористого калия, 8% фтористого нат­рия, 14%   хлористого лития.

При дуговой сварке алюминий и его сплавы сварива­ют угольными или металлическими электродами. При­садочный металл и электродный стержень применяют того же состава, что и основной металл. Флюс и обмазка состоят из хлористого натрия, хлористого калия, хло­ристого лития, фтористого натрия. При сварке угольным электродом полярность тока выбирают прямую.

Возможно, Вас так же заинтересует:
Коммерческое предложение